Orthogonality and Minimality in the Homology of Locally Finite Graphs
نویسندگان
چکیده
Given a finite set E, a subset D ✓ E (viewed as a function E ! F2) is orthogonal to a given subspace F of the F2-vector space of functions E ! F2 as soon as D is orthogonal to every ✓-minimal element of F . This fails in general when E is infinite. However, we prove the above statement for the six subspaces F of the edge space of any 3-connected locally finite graph that are relevant to its homology: the topological, algebraic, and finite cycle and cut spaces. This solves a problem of [5].
منابع مشابه
An Alexandroff topology on graphs
Let G = (V,E) be a locally finite graph, i.e. a graph in which every vertex has finitely many adjacent vertices. In this paper, we associate a topology to G, called graphic topology of G and we show that it is an Alexandroff topology, i.e. a topology in which intersec- tion of every family of open sets is open. Then we investigate some properties of this topology. Our motivation is to give an e...
متن کاملThe homology of locally finite graphs with ends
We show that the topological cycle space of a locally finite graph is a canonical quotient of the first singular homology group of its Freudenthal compactification, and we characterize the graphs for which the two coincide. We construct a new singular-type homology for non-compact spaces with ends, which in dimension one captures precisely the topological cycle space of graphs but works in any ...
متن کاملOn the homology of locally finite graphs
We show that the topological cycle space of a locally finite graph is a canonical quotient of the first singular homology group of its Freudenthal compactification, and we characterize the graphs for which the two coincide. We construct a new singular-type homology for non-compact spaces with ends, which in dimension 1 captures precisely the topological cycle space of graphs but works in any di...
متن کاملThe homology of a locally finite graph with ends
We show that the topological cycle space of a locally finite graph is a canonical quotient of the first singular homology group of its Freudenthal compactification, and we characterize the graphs for which the two coincide. We construct a new singular-type homology for non-compact spaces with ends, which in dimension 1 captures precisely the topological cycle space of graphs but works in any di...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 21 شماره
صفحات -
تاریخ انتشار 2014